Questions
1. Express in terms of k
and h, the sum of root and product of
roots of x2 + kx +h.
2. Given 2x2
+ kx +8 is always positive, find the range of values of k.
3. Complete the
square for 2x2 + 3x -4,
express it in the form of a(x-b)2
+ c.
4. Sketch the curve y=
x2 + 3x -4, -5 ≤x≤
3.
5. Find the range of values of 9 - x2 > 0.
6. Find the range of values of x2 + 5x - 6 < 0.
7. Given y =2x2
+ kx+ 8 intersects y= x at 2
distinct points. Find the range of values of k.
8. Given y= x is tangent to y =2x2 + kx+ 8, find the values
of k.
9. Given y= x is does not intersect y =2x2
+ kx+ 8, find the range of values of k.
1
|
Sum
of roots = -k;
Product
of roots = h.
|
||||||||||||||
2
|
Discriminant
< 0
k2 - 4(8)(2)< 0
k2 - 64 < 0
(k +
8)(k-8) <0
-8 <
k < 8
|
||||||||||||||
3
|
a = 2;
b=3/4 ; c= -71/16
|
||||||||||||||
4
|
y= x2 +
3x -4, -5 ≤x≤
3
= (x+4)(x-1)
|
||||||||||||||
5
|
9 - x2 >
0
x2 -9
> 0
(x+
3)(x-3) > 0
x> 3
or x< -3
|
||||||||||||||
6
|
x2 +
5x - 6<0
(x
+6)(x-1) <0
-6 <
x <1
|
||||||||||||||
7
|
y =2x2 +
kx+ 8 ----- (1)
y=
x
------(2)
2x2 +
kx+ 8 = x
2x2 +(
k-1)x+ 8 =0
Apply
discriminant > 0
( k-1)2 -
4(2)(8)>0
k2 -2k+1-64
>0
k2 -2k-63
>0
(k-9)(k+7)>0
k> 9
or k<-7
|
||||||||||||||
8
|
y =2x2 +
kx+ 8 ----- (1)
y=
x
------(2)
2x2 +
kx+ 8 = x
2x2 +(
k-1)x+ 8 =0
Apply
discriminant = 0
( k-1)2 -
4(2)(8)= 0
k2 -2k+1-64
= 0
k2 -2k-63
= 0
(k-9)(k+7)=
0
k= -7
or k = 9
|
||||||||||||||
9
|
y =2x2 +
kx+ 8 ----- (1)
y=
x
------(2)
2x2 +
kx+ 8 = x
2x2 +(
k-1)x+ 8 =0
Apply
discriminant < 0
( k-1)2 -
4(2)(8)< 0
k2 -2k+1-64
< 0
k2 -2k-63
< 0
(k-9)(k+7)<
0
-7
<k< 9
|
No comments:
Post a Comment