Tuesday, 26 June 2012

Knowledge Check (Quadratic Equation)



Questions
1. Express in terms of k and h, the sum of root and product of roots of x2 + kx +h.
2. Given 2x2 + kx +8 is always positive, find the range of values of k.
3.  Complete the square for 2x2 + 3x -4, express it in the form of a(x-b)2 + c.
4. Sketch the curve y= x2 + 3x -4, -5 ≤x≤ 3.
5. Find the range of values of 9 - x2 > 0.
6. Find the range of values of x2 + 5x - 6 < 0.
7. Given y =2x2 + kx+ 8 intersects y= x at 2 distinct points. Find the range of values of k.
8. Given  y= x is tangent to y =2x2 + kx+ 8, find the values of k.
9. Given  y= x is does not intersect  y =2x2 + kx+ 8, find the range of values of k.

Answers
1
 Sum of roots = -k;
Product of roots = h.
2
Discriminant < 0
k2 - 4(8)(2)< 0
k2 - 64 < 0
 (k + 8)(k-8) <0
-8 < k < 8
3
a = 2; b=3/4 ; c= -71/16
4
y= x2 + 3x -4-5 ≤x≤ 3
  = (x+4)(x-1)

x
-5
-4
-1.5
0
1
3
y
6
0
-6.25
-4
0
14


5
9 - x2 > 0
x2 -9 > 0
 (x+ 3)(x-3) > 0
x> 3 or x< -3
6
x2 + 5x - 6<0
(x +6)(x-1) <0
-6 < x <1
7
y =2x2 + kx+ 8 ----- (1)
y= x                 ------(2)
2x2 + kx+ 8 = x
2x2 +( k-1)x+ 8 =0
Apply discriminant > 0
( k-1)2 - 4(2)(8)>0
 k2 -2k+1-64 >0
k2 -2k-63 >0
(k-9)(k+7)>0
k> 9 or k<-7
8
y =2x2 + kx+ 8 ----- (1)
y= x                 ------(2)
2x2 + kx+ 8 = x
2x2 +( k-1)x+ 8 =0
Apply discriminant =  0
( k-1)2 - 4(2)(8)= 0
 k2 -2k+1-64 = 0
k2 -2k-63 = 0
(k-9)(k+7)= 0
k= -7 or k = 9
9
y =2x2 + kx+ 8 ----- (1)
y= x                 ------(2)
2x2 + kx+ 8 = x
2x2 +( k-1)x+ 8 =0
Apply discriminant <  0
( k-1)2 - 4(2)(8)< 0
 k2 -2k+1-64 < 0
k2 -2k-63 < 0
(k-9)(k+7)< 0
-7 <k< 9

No comments:

Post a Comment